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EXECUTIVE SUMMARY 

This study focused on preparing a novel pure fly ash paste (PFAP) as a potential 

replacement for the cement paste, in order to reduce the life cycle environmental footprint of 

cementitious materials. The PFAP was successfully prepared at room temperature with an as-

received coal fly ash, borax, and with water/binder ratio of 0.2.  

The hardened pure fly ash paste exhibited a reasonable 28-d compressive strength (36 

MPa), rapid strength gain (19MPa and 31 MPa in 1d and 3d, respectively), low bulk dry 

density (1.6 g/cm
3
), very high electrical resistivity, outstanding micro-nano hardness and 

elastic modulus, low gas permeability coefficient (4.1×10
-17

 m
2
/s), reasonably low Cl

-
 

diffusion coefficient (1.9×10
-12 

m
2
/s), a denser microstructure, and better heat resistance than 

the ordinary Portland cement paste. The properties of the PFAP make it a viable “green” 

construction binder suitable for a host of structural and non-structural applications.  

The hydration mechanisms of this “green” binder were presented by characterizing the 

raw material and PFAP pastes via XRF, SEM/EDS, XRD, and DSC/TGA approaches. The 

data reveal that the hydration of the PFAP is very complex and likely entails reactions 

between the free Ca
2+

, Fe
3+

, Al
3+

, and Mg
2+

 and silicates to form amorphous Al-rich and Fe-

rich binder phases.  

While this work only showcases the properties of one specific PFAP, the obtained 

knowledge sheds light on the role of class C PFAP in the hydration process and may benefit 

the expanded use of various PFAP s in the manufacturing of paste, mortar, and concrete 

materials. 
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CHAPTER 1. INTRODUCTION 

1.1 Problem Statement 

Construction activities can have many negative environmental impacts. The hierarchy of 

disposal options to the environmental impacts can be categorized into six levels from low to 

high, namely, reduce, reuse, recycle, compost, incinerate and landfill. Before a recyclable 

material can be utilized in a field, the economy, compatibility with other materials, and 

material properties should be considered as the main three concerns. From the economic 

perspective, the use of waste materials would not be attractive until their costs and quality can 

satisfy the construction requirements.  

The production of Portland cement (the most common binder in concrete) is an energy-

intensive process that accounts for a significant portion of global CO2 emissions and other 

greenhouse gases. In addition, as another energy intensive industry, pavement construction 

and maintenance activities also pose tremendous negative environmental impacts, such as 

greenhouse gases emissions and landfilling problems of waste materials. With increasing 

energy costs and heightened concerns about the environmental footprint of infrastructures’ 

construction and maintenance activities, there has been a steady increase in interest and 

research activity on the use of other recycled materials in concrete infrastructure. Therefore, 

it is indispensable to develop new technologies, which can expand the application of recycled 

materials, to reduce the costs of concrete constructions and maintenance effort, and improve 

waste management and recycling process.  

The re-use of low-cost or recycled materials for preparing “green” concrete has 

increasingly attracted attention of the concrete industry in recent years. Yet research is 

lacking in the synergistic use of multi-scale modifiers and low-cost or recycled materials for 

high performance cementitious binders. While the use of nano-/micro-sized materials and 
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recycled materials in cementitious concrete infrastructure has increased, along with a growing 

body of positive evidence or user experience, a study to leverage the recent advances and 

focus on the cold climate user requirements is needed and timely. The current knowledge 

gaps have hindered development in this area and the effort to balance construction cost and 

overall performances of cementitious concrete infrastructure. 

1.2 Background 

It has been widely accepted that the realization of sustainability should be focused on 

three aspects, namely, economy, society and environment. To facilitate the sustainable 

development of pavement and bridge engineering, not only direct economic costs and social 

benefits from construction process should be considered, additional effort should be made to 

quantify and minimize the indirect costs resulting from their environmental footprint. 

The freeze/thaw damage and impacts from the use of deicing chemicals are important 

factors that aid in determining the durability of the concrete pavement and bridge decks. A 

reduction in performance and service live of the concrete infrastructure can lead to a 

significant cost increases in preventative maintenance and rehabilitation activities. Although 

some technologies may improve durability of the concrete infrastructure, some of these 

technologies may also increase cost and may sacrifice some basic performances of the 

cement concrete.  

1.3 Objectives 

The objective of this project is to develop a new technology by synergistically using 

local low-cost or recycled materials to prepare “green” cementitious binder. In this project, 

we are trying to find a balance between the performance and the environmental benefits 

through the use of recycled materials as cementitious binders. This study will focus on the 

formulation and property testing of the overall performance of the developed “green” binder, 
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with a focus on testing performance at low temperatures, including freeze/thaw and salt 

scaling resistance. 

1.4 Research Methodology  

In this project, the low-cost recycled material, namely the coal fly ash, has been 

employed to fabricate sustainable cementitious binders. Key properties of the binders, 

including freeze/thaw and salt scaling resistance has been tested. For the optimized binder 

formulations, the reaction mechanisms have been elucidated by microstructure and chemical 

analysis. 

In this project, appropriate mix designs for pavements have been developed and the 

strength and durability of the “green” concrete has been tested based on related ASTM and 

AASHTO standards and specifications.  

Task 1. Develop appropriate mix designs for samples 

This task has identified and evaluated the low-cost recycled materials, namely the coal 

fly ash, as “green” cementitious binders. A mix design of the “green” concrete has been 

developed.  Small amounts of surfactant were used to “neutralize” and block the free carbon 

in the high-LOI fly ashes (e.g., LOI between 5% to 8%). This approach is a promising way to 

ensure that the free carbon in the fly ash would not significantly undermine the properties of 

fresh or hardened concrete.  

Once the mix designs of the control concrete were finalized, this task was entail 

fabrication of the “green” concrete to be further tested and examined in later tasks. The effect 

of water/binder ratio and curing regime (relative humidity, temperature, time) on the 

properties of both fresh and hardened concrete has been explored. Cost, properties, and 

“greenness” (amount of fly ash used) have been taken into account when defining the 

optimum. 

Task 2. Determining modifier types of “green” binders 
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The realization of the “green” concrete will mostly build on the success of previous WTI 

research. Patents and other published literature have been examined to understand the state of 

the art and identify useful constituents for eco-friendly cementitious binders. The selected 

materials should pose minimal toxicity to the environment, originate from eco-friendly 

processes, and/or reduce the final product cost. Local low-cost recycled materials – coal fly 

ash was used as the cementitious binders. Initial screening of binder formulations were based 

on two key performance parameters of the nano-modified “green” binder, i.e., freeze/thaw 

and salt scaling resistance. The “green” cementitious binder has been tested at -25C ~ +25C 

for its freeze/thaw damage resistance property and two types of deicing chemicals was used 

for the salt scaling resistance evaluation.  

A statistical design of experiments (DoE) has been employed to investigate the 

interactions between the influential factors and the performance parameters of a host of 

cementitious binder formulations. This task will involve testing compressive strength (ASTM 

C39-2014), splitting tensile strength (ASTM C496-2011), mass loss, and gas permeability of 

the cementitious binders to identify mixes appropriate for the “green” concrete preparation. 

Task 3. Advanced characterization of the modified “green” binders 

Advanced characterization tools, including Scanning electron microscopy (SEM), 

Differential Scanning Calorimetry/Thermogravimetric Analysis (DSC/TGA), has been 

applied to analyze the microstructures and phase change information of select “green” 

cementitious binders. The SEM/EDS analysis provided information on the elemental 

distribution along the fracture surfaces of the cementitious binders (without damage which 

can result from the high energy electron beam), and DSC/TGA provided details of phase 

change information to the specimen of interest. Nano- and micro-analysis using SEM/EDS 

provided the localized morphological and elementary information of the binders. The 



6 

findings from this task help to expand the applications of low-cost recycled materials, which 

can further improve the performances of the “green” cementitious binders. 

Task 4. Final report and presentation  

A final report has been prepared and submitted to CESTiCC. This task involves 

analyzing the experimental data, preparing a final report that documents the background 

information, methodology, and research findings associated with this project, and conducting 

the final presentation.  
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CHAPTER 2. LITERATURE REVIEW 

The production of cement is an energy-intensive process that constitutes a significant 

portion of anthropogenic carbon dioxide emissions and other greenhouse gases (Van Dam et 

al. 2010; Lei et al. 2011; Hasanbeigi et al. 2012). Concrete is the most widely used man-made 

building material in the world, and its annual global production is approximately 5.3 billion 

cubic meters (Roskos et al. 2011).
 
Cement is the most common binder in concrete, and its 

annual global production “has reached 2.8 billion tons (t), and is expected to increase to some 

4 billion tons” (Schneider et al. 2011).
 
 Durability and sustainability are two increasingly 

important characteristics for concrete infrastructure (Shi et al. 2012; Kayali et al. 2013; 

Zhang et al. 2013), and numerous studies have been dedicated to the use of industrial wastes 

as supplementary cementitious materials (SCMs) in concrete without sacrificing its long-term 

performance and reliability (Khatri et al. 1995; Akkaya et al. 2007; Elahi et al. 2010; Johari et 

al. 2011; Shi et al. 2011; Lothenbach et al. 2011). 

Coal fly ashes (CFAs) are the main by-products of coal combustion for electrical energy 

production. They are considered as a type of solid waste with high levels of contaminants, 

and thus pose a substantial environmental risk unless being solidified in concrete or mortar 

(Fytianos et al. 1998; Popovic et al. 2001).
 
The U.S. generates approximately 70 million tons 

of CFAs, of which only 27 percent (~19 million tons) are recycled and the rest are landfilled 

(Rostami and Brendley, 2003).
 
Currently, about 12 million tons of CFAs in the U.S. are 

utilized in concretes and mortars each year, as SCM or as replacement of fine aggregate. 

Other applications of CFAs include road sub-base improvement (Del Valle-Zermeño et al. 

2014),
 
removal of organic and inorganic elements (Ahmaruzzaman, 2010), etc. 

Extensive studies have focused on the beneficial use of CFAs as partial replacement of 

cement in mortars or concretes (Erdoğdu and Türker, 1998; Aydın et al. 2007; Singhal et al. 

2008; Cheerarot and Jaturapitakkul, 2004; Cruz-Yusta et al. 2011; Yüksel et al. 2007; 
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Reijnders, 2007; Sarıdemir, 2014), in the effort of reducing the environmental footprint and 

embodied energy of concrete materials while removing CFAs from the waste stream. The 

chemical composition of CFAs and ordinary Portland cement is similar, but CFAs contain 

higher silica content and ordinary Portland cement contains higher lime content 

(Ramezanianpour, 2014). Many states have allowed the use of performance-specified (ASTM 

C1157) cements that contain CFA. The physico-chemical properties of CFAs can vary 

significantly across power plants, due to differences in the raw materials and in the burning 

processes (Bilodeau et al. 1994; Ma, et al. 1999). Traditionally CFAs have been divided into 

two primary classes, F and C, following the provisions of ASTM C618. Additional 

characteristics of importance include the calcium oxide content, fineness, crystalline structure, 

and loss-on-ignition or LOI (mainly an indicator of free carbon content) of the ash (Malvar 

and Lenke, 2006; Du et al. 2012). 

The last decade has seen the complete replacement of cement by CFAs in mortars or 

concretes to garner considerable interest. The vast majority of studies in this field have 

focused on alkali activated binder materials such as geopolymer and alkali activated fly ash 

(del Valle-Zermeño et al. 2014; Duxson et al. 2007 and 2015; Oh et al. 2012; McLellan et al. 

2011; Habert et al. 2011; Reddy et al. 2012; Gartner, 2004; Shi et al. 2005; Yost et al. 2013a 

and 2013b).
 
These cementitious binders are typically activated by hydroxides of alkali 

elements, such as Li, Na, and K (del Valle-Zermeño et al. 2014; Xie et al. 2010; Roy et al. 

1995; Shi et al. 1996). Such addition provides a high pH environment to promote the 

reactions between the alkali metals or alkali-earth metals, silicates, and aluminates to form 

the cementitious gel. The preparation of these binders requires specific curing conditions 

such as pre-treatment of the CFA, relatively high curing temperature, or high pH (Palomo et 

al. 1999; Guerrero et al. 2004; Bakharev 2005; Goñi and Guerrero, 2007), which has hindered 

their applications in the construction industry. 
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Novel uses of CFAs as cementitious binder can produce cost and energy savings and 

reduce greenhouse gas emissions and landfill waste. This work reports an environmentally 

friendly cementitious binder material made from only the pure class C coal fly ash (received 

from supplier without further treatment), water, and a very small amount of borax (Na2B4O7), 

at room temperature and without direct alkali activation. The use of borax in this system was 

originally intended to mitigate the “flash set” phenomenon observed in this low water/fly ash 

ratio paste. However, further investigation detailed in this work implies its multifunctional 

role. In addition to serving as a set retarder, borax may serve as a chemical activator, with its 

Na
+
 cations and B4O7

-
 anions both participate in the formation of hydration products. Such 

implementation of CFAs as the sole binder in concretes and mortars would translate to even 

greater environmental and economic benefits, relative to the use of CFAs as SCM or their use 

in geopolymer and alkali activated fly ash. Previous studies have demonstrated the feasibility 

of using selected CFAs as the sole binder for structural concrete and reported macro-scale 

engineering properties of this type of “green” concrete material (Roskos et al. 2011; Cross et 

al. 2008 and 2010).
 
Nonetheless, mechanisms underlying the properties of this 

unconventional cementitious binder remain unclear, and this lack of understanding makes it 

difficult to transfer such technology to CFAs with similar or different physico-chemical 

characteristics. In this context, this work is devoted to elucidating the hydration process and 

hydration mechanisms of this “green” cementitious binder, pure fly ash paste (PFAP), using 

ordinary Portland cement paste (OPCP) as control. 

 

http://en.wikipedia.org/wiki/Sodium
http://en.wikipedia.org/wiki/Boron
http://en.wikipedia.org/wiki/Oxygen
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CHAPTER 3. METHODOLOGY 

3.1 Materials Preparation 

The CFA was obtained from the Corette electric power plant in Billings, MT, USA and 

was used to prepare the PFAP without further treatment. An ASTM specification C150-07 

Type I/II low-alkali Portland cement (ASH Grove Cement Company, Clancy, MT) was used 

in this study. The chemical composition of the as-received CFA and the Portland cement 

were obtained using PANalitical AXIOS PW4400 X-Ray Fluorescence (XRF), with the 

results shown in Table 3- 1. It can be seen that the fly ash used in this study can be defined as 

“High Calcium” fly ash or class C fly ash since the CaO content is higher than 25%.  

Table 3- 1. Chemical composition of the fly ash and cement (wt.%). 

Component Coal Fly Ash Cement 

SiO2 29.5 20.4 

Al2O3 17.3 3.7 

Fe2O3 6.5 3.4 

SO3 3.5 2.6 

CaO 30.6 63.3 

P2O5 1.3 - 

Na2O 3.1 0.1 

K2O 0.4 0.4 

MgO 5.3 3.2 

TiO2 1.6 - 

LOI 0.23 2.7 
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The mix design for the PFAP samples (Table 3- 2) consisted of only fly ash, a very 

small amount of borax, and water. The water/binder ratio of 0.20 was determined based on 

extensive trial and error, in order to achieve reasonable workability of fresh paste and 

reasonable strength of hardened paste. This differed greatly from the water/binder ratio of 

0.40 for the OPCP. The workability of the PFAP was tested according to ASTM-C1437, and 

the workability of the OPCP with water/cement ratio of 0.40 was also tested for comparison. 

Table 3- 2. Mix design of the pure fly ash paste and the ordinary Portland cement paste. 

Mix design parameter Ordinary Portland cement paste Pure fly ash paste 

Water/binder ratio 0.40 0.20 

Borax (wt.% of fly ash) - 0.20 

Fly ash content - 100% 

Cement content 100% - 

 

For PFAP sample preparation, the borax was dissolved in the water before the water was 

mixed with the fly ash. After mixing, the fresh paste was cast into polyvinyl chloride (PVC) 

molds to form Φ 50.8 mm (diameter) × 101.6 mm (length) cylinders, and was carefully 

compacted to minimize the amount of entrapped air. The paste specimens were de-molded 

after 24 h at room temperature, and then cured in a wet chamber (20 ± 2C, relative humidity: 

95%) for additional days. To halt the hydration of paste samples at the given age (1, 3, 7, or 

28 days), the samples were immersed in acetone for 12 h to remove the free water within 

them. The compressive strength test followed ASTM C109 and the loading rate was 0.5 

mm/min. The average measurement from 6 samples was used as the final data value. The 

bulk density is only used as a basic property of the PFAP. This was calculated by dividing the 

weight of PFAP cylinders by its volume. 
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3.2 Properties Testing 

The gas permeability test was performed using liquid methanol as the gas source to 

determine the gas transport properties of 28-d cured paste specimens. A 10 mm thick 

specimen was cut from a Φ 50.8 mm (diameter) × 101.6 mm (length) paste cylinder sample 

and then oven-dried at 105°C for 24 hours to remove the moisture within the specimen. 

Subsequently, liquid methanol was added before the specimen was placed and sealed on the 

top of a cell with a silicone sealant to avoid any leakage of methanol vapor. The initial weight 

of the whole specimen setup (cell, methanol liquid, and specimen and silicone sealant) was 

measured at the beginning of the test. The values of mass variation versus time due to the 

vaporization of methanol liquid at a constant 40°C water bath temperature during the test 

were continuously recorded at each time interval until a steady-state mass loss was reached. 

The gas permeability coefficient k (m2/s) was then calculated using these mass variation 

values (Yang et al. 2011). 

The chloride anion (Cl-) permeability of water-saturated, 28-d cured paste specimens 

was tested via electromigration experiments on a setup featuring a disc-shaped specimen that 

separated the Cl- source (a solution of 3% NaCl and 1% NaOH) and the Cl- destination (a 

solution of 1% NaOH ). Each compartment contained a clean, 316L stainless steel mesh 

electrode with similar exposed surface area (~15 cm
2
) that was connected to a DC power 

source. Once the specimen, electrolytes, and electrodes were in place, a 30-volt DC electric 

field was maintained across the 10 mm thick disc. Chloride concentrations in the destination 

solution were measured at predetermined time intervals using a chloride sensor that consisted 

of a custom-made Ag/AgCl electrode and a saturated Calomel electrode (SCE) reference 

electrode. The chloride sensor was periodically calibrated so that its open circuit potential 

(OCP) measurements could be converted to units of molarity and plotted as a function of time; 
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the time of chloride penetration was used in the calculation of apparent chloride diffusion 

coefficient, D (m
2
/s) (Yang et al. 2009). 

At the beginning of the electromigration test, the Gamry Reference 600TM 

Potentiostat/Galvanostat/ZRA instrument was employed to measure electrochemical 

impedance spectroscopy (EIS) data in order to characterize the microstructural properties of 

water-saturated paste specimens. To this end, a platinum mesh was placed in the cathodic 

compartment to serve as the counter electrode, whereas the stainless steel electrode and the 

SCE in the anodic compartment served as the working electrode and the reference electrode, 

respectively. The EIS measurements were taken by polarizing the working electrode at 10 

mV around its OCP, using sinusoidal perturbations with a frequency between 5 mHz and 50 

KHz (10 points per decade). The Gamry Echem Analyst TM software was used to plot and fit 

the EIS data.  

3.3 Microstructure Characterization Methods 

The surface morphology of the paste specimens was observed by scanning electron 

microscopy (SEM), performed on an FEI-Quanta 200F scanning electron microscope. SEM 

was conducted under an accelerating voltage of typically 20 kV. For Energy Dispersive 

Spectrometer (EDS), a micro-analytical unit was employed to detect the small variations in 

trace element content, using an accelerating voltage of typically 15-20 kV and a scan time of 

60 s per sampling area. 

Nano-indentation was employed to characterize the hardness and modulus of the plate 

specimens. It was performed following the continuous stiffness measurement (CSM) method 

with a Nano Indenter XP from American MTS Corporation. Hardness is defined as the ratio 

of the load to the projected contact area, H = P/A. The experiments were conducted on the 

original, unpolished surface with a ball-on-disk tester of type WTM-2E. The micro-nano 

mechanical properties were obtained from the analyses of load-displacement data. In this 
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study, the loading definition was 50 nN, and the displacement was 0.1 nm. Twenty five 

indentations were performed on each sample. The indentations were made with 20 

spacing in each indented location. Loading was applied linearly for 10 s, the maximal load 

was then maintained for 5 s, and unloading occurred over another 10 s. 

The thermal properties of the paste powder samples were characterized by differential 

scanning calorimetry (DSC) and thermogravimetric analyses (TGA), using a Mettler Toledo-

TGA/SDTA851
e
. The 28-d paste samples were finely crushed, oven-dried at 105C for 24 

hours, cooled in a desiccator, and weighed before their TG/DSC test. The measurements were 

performed in air with a temperature range from 25°C to 900°C and a heating rate of 

15 °C/min. 

X-ray diffraction (XRD) patterns of the paste specimens were obtained on a Rigaku 

D/max-rA X-ray diffractometer with Cu Kα radiation (λ = 1.5406 Å).  

3.4 Microstructures of Raw Materials by SEM/EDS/XRD 

The analysis of the raw materials (especially the pure CFA) is essential for this work, 

considering the substantial variations inherent in the physico-chemical characteristics of 

CFAs from various sources and processes. CFAs can be characterized by different methods to 

determine their phase, mineral morphology, and chemical composition. These include 

SEM/EDS for morphology and chemical analyses (Kutchko and Kim, 2006), X-ray 

diffractometry for phase determination (Ward and French, 2006), differential thermal and 

thermogravimetric analyses (Paya et al. 1998),
 
and Mössbauer and infrared spectroscopy for 

intrinsic microstructure analysis (Gomes et al. 1999; Veranth et al. 2000).  

Figure 3- 1 illustrates the low and high magnification SEM micrographs of the coal fly 

ash particles used in this study. As can be seen from Figure 3- 1(a), the vast majority of the 

CFA particles feature a typical spherical shape with a wide size distribution from 

micrometers to nanometers and rough surfaces. Due to their high surface energy, the nano 
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sized CFA particles are apt to form agglomerates or adsorbed on the surfaces of the large 

particles, as demonstrated in Figure 3- 1(b). There are also some non-spherical particles and 

other minerals present in the CFA (Figure 3- 2). The chemical analysis of the CFA spheres 

was enabled by combining SEM with EDS, and the typical results are shown in Figure 3- 3. 

In addition to elements O and Ca, the spheres were found to contain significant levels of C, 

Al, Si, Mg, Na, and Fe, and trace amounts of S, P, Ti, and Sr.  

  

Figure 3- 1. Low and high magnification SEM micrographs of the CFA spheres. 

            

Figure 3- 2. SEM morphologies of the non-spherical fly ash particles. 
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Figure 3- 3. SEM/EDS analysis of the fly ash particles. 

The crystalline phases of the coal fly ash were determined by XRD analysis, shown in 

Figure 3- 4. As seen in this pattern, the two main peaks appear at about 27° and 34°, which 

represent the relatively high content of quartz (SiO2) and hematite (Fe2O3), respectively. 

Meanwhile, the peaks of lime (CaO) were also detected at about 38°, 54°, and 68°, and peaks 

of periclase (MgO) and alumina (Al2O3) were observed as well.  
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Figure 3- 4. XRD pattern of fly ash powder and PFAP cured for 1,7, 14, and 28 days. 

Other studies have revealed that class F CFAs tend to contain mainly crystalline phases 

of aluminum silicates with iron oxides on the surfaces and some amorphous phases (Kutchko 

and Kim, 2006; Gomes et al. 1999).
 
For the class C CFA used in this study, however, the 

combined XRF, SEM/EDS and XRD data suggest that it contains mainly amorphous Al-rich 

and Ca-rich phases with some crystalline phases of quartz, hematite, free lime, periclase, and 

alumina. 
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CHAPTER 4. PROPERTIES AND MICROSTRUCTURES 

4.1 Properties of Hardened Pastes 

Figure 4- 1 shows the evolution of compressive strength of PFAP as a function of curing 

time. The PFAP’s compressive strength increased logarithmically with curing time, and 

reached about 36 MPa after 28 days of curing. This value is comparable with the 28d 

compressive strength of the Portland cement paste (usually varied from 30 to 50 MPa 

according to different cement types or water/cement ratio). This implies the suitability of this 

unconventional “green” binder for a host of structural and non-structural concrete 

applications, without the need for external heating or chemical activation. This binder also 

features relatively high early-age strengths, which are desirable for accelerated construction 

and rapid renewal of concrete infrastructure. The compressive strength of the PFAP reached 

about 19 MPa and 31 MPa after one day and three days of curing, respectively; which means, 

the 1d and 3d compressive strength have reached the 53% and 86% of the 28d strength. The 

compressive strength behavior of the pure fly ash pastes is consistent with that of the pure fly 

ash concretes reported earlier, which generally featured 20 MPa, 33 MPa, and 55 MPa at the 

age of 1d, 28d, and one year, respectively (Cross and Stephens, 2008).
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Figure 4- 1. Compressive strength of the PFAP cured for 1, 3, 7, and 28 days. 

As shown in Table 4- 1, the PFAP samples show a relatively lower (but still reasonable) 

workability with slump of about 121 mm than the OPCP samples with slump of about 216 

mm. If needed, such difference in slump values can be readily addressed by the use of high 

range water reducer. The PFAP samples featured an average bulk dry density of 1.6 g/cm
3
, 

which is 20% less than that of the OPCP samples and makes the PFAP a desirable binder in 

many applications such as lightweight concrete and concrete fill for hydraulic fracking 

operations.  

 

 

 

 

 

 



 

20 

Table 4- 1. Properties of the pure fly ash paste and ordinary Portland cement paste. 

Properties 

ordinary Portland cement 

paste 

pure fly ash paste 

Slump 216 mm 121 mm 

28-d Compressive strength (MPa) 56 36 

Bulk Dry Density (g/cm
3
) 2.0 1.6 

Surface Resistivity (kΩ·cm) 6.2 1.3×10
2
 

Bulk Resistivity (kΩ·cm) 12 1.5×10
4
 

Hardness, H (GPa) 1.4 1.8 

Elastic Modulus (GPa) 37.6 39.4 

Gas permeability coefficient, k (10
-17

 m
2
/s) 4.8 4.1 

Chloride diffusion coefficient, D (10
-12

 m
2
/s) 1.5 1.9 

Q 
2
) 217 147 

R (kΩ.cm
2
) 35 154 

 

Furthermore, Table 4- 1 shows that the PFAP samples featured an average surface 

(electrical) resistivity of 1.3×10
2
 kΩ·cm and an average bulk resistivity of 1.5×10

4
 kΩ·cm, 

which are considerably higher than those of the OPCP samples. This may be attributable to 

lower conductivity of hydration products in the paste bulk, lower amount of ions in the pore 

solution of the PFAP, lower porosity, and/or lower amount of percolated pores in the PFAP 

(Rajabipour and Weiss, 2007). 

Table 4- 1 also lists the hardness and elastic modulus, gas permeability coefficient, Cl
-
 

diffusion coefficient, and electrochemical parameters of the PFAP, in comparison with the 
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OPCP. The nano-indentation test results show that the average micro-nano hardness and 

elastic modulus of PFAP were 1.8 GPa and 39.4 GPa, respectively. These are 29% and 5% 

higher than those of the OPCP (1.4 GPa and 37.6 GPa), respectively. The average gas 

permeability coefficient of the PFAP was 4.1×10
-17

 m
2
/s, which is about 15% lower than the 

OPCP. However, the average Cl
-
 diffusion coefficient of the PFAP was 1.9×10

-12 
m

2
/s, which 

is 27% higher than that of the OPCP. Such inconsistent differences in the relative 

performance of PFAP and OPCP can be explained by the different percolation pathways by 

gas and liquid in porous media. Relative to the OPCP, the PFAP samples have a higher 

amount of confined water (as indicated by the DSC data discussed later), which offers more 

critical paths for liquid transport while decreasing the gas penetration. Another complicating 

factor is the chloride binder capacity of these pastes, which plays a significant role in the 

diffusion of free chloride as well. 

The EIS parameters that characterize the electrolyte–paste interface are the ionic 

transport resistance (R) and the capacitance (in this case, constant phase element) of the paste 

disc (Q). Relative to the OPCP, the PFAP samples featured much greater R (154 vs. 35 

kΩ.cm
2
) and significantly lower Q 

2
). The higher ionic transport 

resistance and lower electric capacitance of PFAP suggest a denser microstructure, relative to 

the OPCP. Note that this finer microstructure factor contributed to lower gas permeability, 

higher electrical resistivity, and higher micro-nano hardness, but is overshadowed by other 

factors in the case of chloride permeability or compressive strength. 
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4.2 Characterization of the PFAP 

 

XRD of the pastes at different ages 

 

XRD was employed for the phase determination of the cementitious materials, and the 

results suggest some potential mechanisms of the hydration reaction of the PFAP (Baur and 

Johnson, 2003; Johnson and Kersten, 1999).
 
Figure 3- 4 shows the XRD pattern of the fly ash 

powders and the PFAP cured for 1d, 7d, 14d, and 28d, respectively. As can be seen in this 

figure, a few crystalline phases can be observed in the fly ash powders, including quartz 

(SiO2) alumina (Al2O3), hematite (Fe2O3), periclase (MgO), and lime (CaO). This is well 

agreed with the XRF results demonstrated in Table 3- 1. As illustrated in this figure, the 

PFAP features a predominantly amorphous structure. However, similar to C-S-H phases in 

hydrated Portland cement, some small size non-reacted crystalline phases remain in the 

hydration products and their quantification is a big challenge. By comparing with the as-

received fly ash powder, it can be seen that a few unreacted phases of quartz, alumina, 

periclase and hematite remain in the hydrated fly ash paste. 

The diffraction patterns share similar phase compositions, but the peaks show different 

intensities as a function of curing time. In this figure, the main characteristic peaks of the 

alumina hydrate appear at about 27° and 43°, and they keep increasing with longer curing 

time, until 14 days, which demonstrates the increasing quantity of the alumina hydrate 

crystals. These peaks in the 28 d samples become lower and wider, implying the dissolution 

and size reduction of the alumina hydrate crystals. The main peaks of the hematite and 

periclase phases appear at about 33 ° and 63°, respectively, and their intensity evolution with 
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curing time was similar to that of aluminum hydroxide phases. The detailed composition of 

the PFAP amorphous phases is hard to determine using XRD alone; as such, they should be 

analyzed using a combination of other characterization techniques in future research. 

 

SEM/EDS of the hardened pastes 

 

The low magnification fracture surface SEM micrographs of the PFAP cured for 1, 7, 14, 

and 28 days are shown in Figure 4- 2. It can be observed from this figure that the microscopic 

fracture of the PFAP mainly occurred on the hydration products or the interfaces between 

them and the fly ash spheres. In other words, fracture on the fly ash spheres rarely occurred. 

After curing for 1 day (Figure 4- 2(a)), at the beginning of the hydration reaction, many 

micro-cracks and micro-pores were found, and at the surfaces of the fly ash spheres, small 

unreacted particles were observed. Due to the incomplete hydration reaction, the interfaces 

between the fly ash spheres and the hydration products were not very obvious, and pits were 

rarely observed at the fracture surface. After curing for 7 days (Figure 4- 2(b)), with the 

progress of the hydration reaction, more hydration products with higher densities were 

observed. However, the surfaces of the fly ash spheres were still not very smooth, and many 

unreacted small particles were observed as well, in addition to some pits. This demonstrates 

that the cracks were propagated not only from the hydration products themselves, but also 

from the interfaces between the fly ash spheres and the hydration products. After curing for 

14 days (Figure 4- 2(c)), the morphology of the fracture surface was considerably different 

from those cured for only 1 day or 7 days. The number of unreacted small particles on the fly 

ash spheres decreased significantly, the interfaces between the fly ash spheres and the 
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hydration products became smoother, the hydration products became much denser, the 

quantity of micro-cracks and micro-pores decreased significantly, and the quantity of pits 

increased. The observed morphology suggests that the quantity of hydration products 

increased with curing time, and that the interfaces between them and the fly ash spheres 

became another type of defects inside the PFAP matrix. After curing for 28 days (Figure 4- 

2(d)), with much of the hydration process completed, the microscopic fracture surface of the 

PFAP became relatively clear and consisted of only the pits, amorphous glassy phases, and 

spherical fly ash particles. The surfaces of the fly ash spheres were smooth, and few 

unreacted particles were observed, although some air voids and micro-cracks were still 

visible.  

  

  

Figure 4- 2. Low magnification SEM micrographs of the fracture surfaces of PFAP 

cured for a) 1 day, b) 7days, c) 14 days, d) 28 days 
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The high magnification fracture surface SEM micrographs of the PFAP cured for 1, 7, 

14, and 28 days are shown in Figure 4- 3, and Figure 4- 4 gives the SEM/EDS results of the 

PFAP fracture surface cured for 28d. As can be seen from Figure 4- 3, the cured PFAP can be 

divided into two main types, unreacted fly ash spheres and hydration products. It can be seen 

from Figure 4- 4 that the chemical composition of the unreacted fly ash spheres mainly 

consists of Al, Si, Ca, Na, Mg, and Fe. Figure 4- 5 and Figure 4- 6 show the fracture surface 

SEM images and the corresponding EDS results in various areas cured at 1d and 28d, 

respectively. At the beginning of the hydration process (cured for 1day), the microscopic 

areas with higher Si or Ca content show smoother surfaces than those with higher Mg or Fe 

content. In the fly ash spheres, the ratios between the Mg/Fe/Al/Si/Ca could be 1:3:2:1.5:6 

(Figure 4- 5, area 1), or 1:1.5:0.5:0.3:5 (Figure 4- 5, area 3). After curing for 28 days, the 

same ratios in the fly ash spheres developed to about 1:1:2:2:2.5 (Figure 4- 6, area 7). This 

reveals marked decrease in the Ca/Si and Fe/Si ratios and significant decrease in the Al/Si 

and Mg/Si ratios, likely due to the dissolution of Ca-rich, Fe-rich and Al-rich phases and the 

subsequent consumption of Ca
2+

, Fe
3+

, Al
3+

 and Mg
2+

 by the hydration reactions. 
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Figure 4- 3. High magnification SEM micrographs of the fracture surfaces of PFAP 

cured for a) 1 day, b) 7days, c) 14 days, d) 28 days 

 

 

 

Figure 4- 4. The SEM/EDS images of PFAP cured for 28 day 

Unlike the fly ash spheres, the hydration product morphology of the PFAP was similar 

to that of the Portland cement, featuring a lamellar shape and similar chemical compositions. 
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As seen from the EDS data, at the beginning of the hydration process, the ratios of 

Mg/Fe/Al/Si/Ca were 1:1:1:7:7 (Figure 4- 5, area 2) for the lamellar hydration products. The 

ratios developed to 1:2:4:2:9 after curing for 28 days (Figure 4- 6, area 8). This reveals 

marked increase in the Al/Si, Fe/Si, Ca/Si, and Mg/Si ratios, due to the uptake of Al
3+

, Fe
3+

, 

Ca
2+

, and Mg
2+

 from fly ash spheres. 

 

  

  

Figure 4- 5. The fracture surface EDS results of PFAP at various areas cured for 1 day 
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Figure 4- 6. The fracture surface EDS results of PFAP at various areas cured for 28 days 

 

DSC/TGA of the hardened pastes 

 

The DSC/TGA curves have been widely used to identify the phases of hydration 

products of cementitious materials (Pelisser et al. 2012). The DSC thermogram illustrates the 
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heat flow between the hardened paste powder sample as a function of temperature, and the 

TGA pattern shows the weight loss of the sample as a function of temperature.  

The DSC thermogram of PFAP and OPCP is presented in Figure 4- 7(a), and there is 

marked difference between the two. Figure 4- 7(a) reveals that the OPCP thermogram 

features three major variations during the heating process. The first one, attributed to the 

dehydration of the water confined in the hydration products of Portland cement paste, started 

at about 90°C and ended around 100°C. The second major peak started from about 425°C and 

ended around 475°C, corresponding to the decomposition of Portlandite (calcium hydroxide). 

The third variation started at about 650°C and ended around 675°C, corresponding to the 

decomposition of the calcium carbonate. Figure 4- 7(a) reveals that the PFAP thermogram 

features one major variation during the heating process. While this peak also started at about 

90°C and ended around 200°C. In light of the higher Al2O3 content in the raw material, the 

wider shoulder in this thermogram may be attributed to the decomposition of alumina hydrate 

and ettringite phases (e.g., 4CaO·Al2O3·SO3·12H2O) (Chakraborty et al. 2013). Unlike the 

OPCP, the PFAP did not exhibit any obvious Portlandite decomposition peak. This is partly 

due to the lower CaO content in the binder. This also implies that the non-cementitious 

Portlandite formed during the hydration of the Class C fly ash was further converted to form 

C-S-H or other cementitious phases, which is desirable for strength and durability of the 

hardened paste (Feng et al. 2013).
 
A small peak around 250°C to 280°C was detected, which 

is attributable to the decomposition of the alumina hydrate phase. Finally, the calcium 

carbonate decomposition peak was barely observed in the PFAP thermogram. The low 
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calcium carbonate content in the PFAP can be attributed to the lower amount of Ca
2+

 cations 

available for carbonation. 

The composition difference between the PFAP and the OPCP was further supported by 

their marked difference in the thermogravimetric pattern (Figure 4- 7(b)), i.e., TGA. The 

hardened OPCP exhibited three obvious decreasing slopes at about 90°C, 450°C, and 650°C, 

respectively, which corroborates the DSC peaks corresponding to confined water dehydration, 

Portlandite decomposition, and calcium carbonate decomposition. The OPCP featured a mass 

loss of about 5 % at 100°C, another 3% in the range of 425°C to 475°C, and another 1.5% in 

the range of 625°C to 675°C. In contrast, the hardened PFAP exhibited one main decreasing 

slope in the range of 25°C to 200°C (with a mass loss of about 6%), corresponding to the loss 

of confined water and decomposition of alumina hydrate. The mass loss of the cementitious 

paste with increasing temperature is mainly the result of water loss from and decomposition 

of the binder phases. As such, the hardened PFAP exhibited better heat resistance (less mass 

loss) than the hardened OPCP. This makes the PFAP a desirable binder in many applications 

such as fire-resistant concrete. 

 It is worth noting that the hardened PFAP exhibited better heat resistance (less mass 

loss) than the hardened OPCP, which makes the PFAP a desirable binder in many 

applications such as fire-resistant concrete. 
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Figure 4- 7. DSC and TGA patterns of PFAP and OPCP after cured for 28 days at room temperature 

with humidity of 95%. (a) DSC, and (b) TGA 

4.3. Hydration Mechanisms for the PFAP 

It was found that the C-S-H in hardened Portland cements paste generally has an average 

Ca/Si ratio of about 1.75, and varies from about 1.2 to 2.1 (Richardson, 1999). A few 

outstanding models demonstrated that the nanostructure of C-S-H is mainly falling into two 

types (Allen et al. 2007). One is where the silicate anions are entirely monomeric, and the 

other one is where linear silicate chain is present in 1.4 nm tobermorite (and a number of 
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other minerals) (Taylor, 1986). In addition to the above mentioned model, another solid C-S-

H model was developed based on the H2O/D2O SANS contrast variation approach. In this 

model, the nanoscale Portlandite phase can be quantified and the solid C-S-H formula, 

(CaO)x(SiO2)(H2O)y, are able to be determined in terms of x and y, together with its mass 

density (Thomas et al. 1998). In general, the main hydration reaction of ordinary Portland 

cement paste can be written as
 
(Thomas et al. 1998; Taylor and Harry, 1997; Bentz, 1997): 

                                                                   (1) 

                                            (2) 

or 

                                   (3) 

With addition of aluminate and ferrite, the reaction will become as: 

                                                    (4) 

                                           (5) 

                                          (6) 

                                 (7) 

                                (8) 

                                           (9) 

In comparison, the main hydration reactions of PFAP may consist of some additional 

hydration reactions as follows (Pace et al. 2011): 

                (10) 

           (11) 

             (12) 



 

33 

Borax was admixed in the fresh fly ash paste as a set retarder, since the PFAP samples in 

the absence of borax exhibited the behavior of flash setting. Nonetheless, the role of borax is 

multifunctional, which merits further investigation. For instance, the incorporation of borax 

(Na2B4O7) also played a significant role in the pH of the pore solution, through the hydrolysis 

of the borax shown as: 

                               (13) 

As suggested by the data discussed so far, the hydration of the CFA is very complex and 

likely entails reactions between the free Ca
2+

, Fe
3+

, Al
3+

, and Mg
2+

 and silicates to form 

amorphous Al-rich and Fe-rich binder phases and more crystalline binder phases including, 

alumina hydrate, C-S-H, M-A-S-H, C-A-S-H, etc. The ettringite formation, especially if 

occurring at a late age of the hardened paste, would introduce undesirable expansive stress 

inside the paste matrix and pose a risk to its integrity. As such, the SO3 content in the CFA 

plays a crucial role in controlling the amount of ettringite in the hardened paste. As shown in 

Eqn. (13), admixing borax into the fresh paste leads to the formation of boric acid, which can 

also react with Ca
2+

, alumina, and water and thus reduce the amount of ettringite formed.  

In the hydration process of cement paste, the reaction between the CaO and water occurs 

very quickly to produce Ca
2+

 and OH
-
 ions. Under this high pH condition, silicates will 

dissolve quickly, which then combine the Ca
2+

 cations in the solution to form the main phase 

of the binder, C-S-H. Different from ordinary Portland cement, fly ash features a higher 

Al2O3 and lower CaO content and thus its hydration products are different. A decrease in the 

CaO will decrease the concentrations of Ca
2+

 and OH
-
 ions in the pore solution. As the pore 
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solution of the PFAP features a pH not as high as that of the OPCP, the dissolution of 

silicates in CFAs into the solution typically becomes slower. This helps to explain the 

continued strength development of the pure fly ash concretes beyond 28 days and up to one 

year (Cross and Stephens, 2008).
  

The high early-strength of the PFAP samples can be attributed to the fact that this class 

C CFA mainly composed of amorphous Al-rich and Ca-rich phases with some crystalline 

phases of quartz, hematite, free lime, periclase, and alumina, instead of crystalline phases of 

aluminum silicates (in the case of class F CFAs). The significant level of Al and trace amount 

of Fe in this CFA may contribute to the hydration process as well, as Goñi claimed that the Si 

in the C-S-H chains can be substituted by Al or Fe in a class C CFA belite cement (Goñi and 

Guerrero, 2007). Through a Mössbauer spectroscopy study, Lemougna suggests that Fe is 

able to play a positive role to form the binder phase in the fly ash cement paste (Lemougna et 

al. 2013). The study claimed that the forsterite in the original ashes will not react with OH
-
, 

but part of the augite phase will be dissolved and form new hydration products. 

The high alkali content and low impurity content in the CFA also contributed to the high 

early-strength of the PFAP samples. As shown in Table 1, the equivalent alkali content 

(expressed as %Na2O + 0.658 × %K2O) is considerably higher in the CFA (3.4%) than that in 

the cement (0.4%), whereas the LOI (mainly an indicator of free carbon content) is 

considerably lower in the CFA (0.23%) than that in the cement (2.7%). These characteristics 

of the CFA made its hydration behavior to differ from that of typical high-impurity, low-

alkali CFAs. 
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CHAPTER 5. CONCLUSIONS 

(1) This study focused on preparing a novel pure fly ash paste as a potential replacement for 

the cement paste, in order to reduce the life cycle environmental footprint of cementitious 

materials. The PFAP was successfully prepared at room temperature with an as-received coal fly 

ash, borax, and with water/binder ratio of 0.2.  

(2) The hardened pure fly ash paste exhibited a reasonable 28-d compressive strength (36 

MPa), rapid strength gain (19MPa and 31 MPa in 1d and 3d, respectively), low bulk dry density 

(1.6 g/cm3), very high electrical resistivity, outstanding micro-nano hardness and elastic 

modulus, low gas permeability coefficient (4.1×10-17 m2/s), reasonably low Cl- diffusion 

coefficient (1.9×10-12 m2/s), a denser microstructure, and better heat resistance than the 

ordinary Portland cement paste. The properties of the PFAP make it a viable “green” 

construction binder suitable for a host of structural and non-structural applications.  

(3) The hydration mechanisms of this “green” binder were presented by characterizing the 

raw material and PFAP pastes via XRF, SEM/EDS, XRD, and DSC/TGA approaches. The data 

reveal that the hydration of the CFA is very complex and likely entails reactions between the free 

Ca2+, Fe3+, Al3+, and Mg2+ and silicates to form amorphous Al-rich and Fe-rich binder phases.  

(4) While this work only showcases the properties of one specific CFA, the obtained 

knowledge sheds light on the role of class C CFA in the hydration process and may benefit the 

expanded use of various CFAs in the manufacturing of paste, mortar, and concrete materials. 
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